Controlled quantum states of isolated and interacting defects in silicon

Gabriel Aeppli*1

 1 London Centre for Nanotechnology (University College London) (LCN) – 17-19 Gordon Street London WC1H 0AH, United Kingdom

Abstract

We describe the control and observation of coherent superpositions of defect orbitals in silicon using both scanning tunneling microscopy and pulsed THz radiation generated by the Dutch-UK free electron laser FELIX. The results are contrasted with those for control of defect spins, where we can produce entangled mixtures of nuclear and electronic degrees of freedom.

References:

Greenland et al., Nature (2010)

http://www.nature.com/nature/journal/v465/n7301/full/nature09112.html

Vinh et al., PRX (2013)

http://prx.aps.org/abstract/PRX/v3/i1/e011019

Morley et al, Nature Materials (2010 and 2013)

http://www.nature.com/nmat/journal/v9/n9/full/nmat2828.html and

 $http://www.nature.com/nmat/journal/v12/n2/full/nmat3499.html\\ Schofield et al., Nature Comm.~(2013)~http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2679.html\\ Description of the common communication of the commu$

^{*}Speaker